Al)

3

sha Al sl d

S Qaal)

Ll -

alal) i)

i

Chapter 1

Computer arithmetic

1.1 Introduction

What are numeric methods? They are algorithms that compute approximations to
solutions of equations or similar things.

Such algorithms should be implemented (programmed) on a computer.

‘ physical model ‘

verification
sical explanation of the results

‘ mathematical model ‘

presentation of results

visualization
solve the model with
numerical methods
mathematical theorems computer
numerical analysis programming

Figure 1.1: The big picture

Numerical methods are not about numbers. It is about mathematical insights.

We will study some basic classical types of problems:

e development of algorithms;

e implementation;

10 CHAPTER 1. COMPUTER ARITHMETIC

e a little bit of analysis, including error-estimates, convergence, stability etc.

We will use Matlab throughout the course for programming purpose.

1.2 Representation of numbers in different bases

Some bases for numbers:

10: decimal, daily use;

2: binary, computer use;

8: octal;

18: hexadecimal, ancient China;
20: ancient France;

e etc...

In principle, one can use any number 3 as the base.

integer part fractional part

—_—
<anan_1 ceearag . blbgbg o >

B
= apf"+an 1"+ - +a1B8+ag (integer part)
+0187 + 0BT b3 B 4 (fractonal part)

Converting between different bases:
Example 1. octal — decimal

(45.12)s =4 x 82 +5x 84+ 1 x 871 42 x 872 = (37.15625) 19

Example 2. octal — binary

1.2. REPRESENTATION OF NUMBERS IN DIFFERENT BASES

Observe
(Ds = (1)2
(2)s = (10)
(3)s = (11)2
(4)s = (100)2
(5)s = (101)9
(6)s = (110)9
(Ms = (111)
(8)s = (1000),
Then,
(5034)s = (101000,011.100),
5 0 3 4
and
(110010111001), = (6 2, 7 1)

110 010 111 001

Example 3. decimal — binary: write (12.45)1¢ in binary base.

Answer. integer part

= (12)10 = (1100)2

DN DN DN
I»—xlwlcn|}—~

[N}
_ - O O

fractional part

0.45 | x 2
09 | x 2
1.8 | x 2
16 | x 2
1.2 | x 2 = (0.45)10 = (0.01110011001100 - - -).
04 | x 2
0.8 | x 2
16 | x 2

Put together:
(10.45)19p = (1100.01110011001100 - - -)2

11

12 CHAPTER 1. COMPUTER ARITHMETIC

1.3 Floating point representation

normalized scientific notation

decimal: ©# = +r x 10", 107! <r < 1. (ex: r = 0.dydads---, di #0)

binary: x = +r x 10, 271 <r <1

octal: x =4rx 8", 8 l1<r<1

r: normalized mantissa

n: exponent

Computers represent numbers with finite length. These are called machine numbers.

In a 32-bit computer, with single-precision:

1 byte 8 bytes radix point 23 bytes
i | | |
[s | c | f
sign o} T T
mantissa biased exponent mantissa

Figure 1.2: 32-bit computer with single precision

The exponent: 28 = 256. It can represent numbers from —127 to 128.

The value of the number:
(—1)* % 27127 5 (1),

This is called: single-precision IEEE standard floating-point.
smallest representable number: zpin = 2727 &~ 5.9 x 10739,
largest representable number: T, = 2128 ~ 2.4 x 1038,

We say that z underflows if © < Zpi,, and consider z = 0.

We say that z overflows if > xyax, and consider x = oo.

Computer errors in representing numbers:

e round off relative error: < 0.5 x 2723 2~ 0.6 x 10~

e chopping relative error: < 172 ~ 1.2 x 1077

Floating point representation of a number x: call it fl(x)
fi(z) =z - (1+90)
fi(z) — =z

relative error: = —— =§
T

1.4. LOSS OF SIGNIFICANCE 13

absolute error: =fl(x) —z =02
|0] < e, where ¢ is called machine epsilon, which represents the smallest positive number

detectable by the computer, such that fi(1 +¢) > 1.

In a 32-bit computer: e =272,
Error propagation (through arithmetic operation)

Example 1. Addition, z =z + y.
Let
fi(z) =2(1+4d:), f(y) =y(1+3y)

Then

fi(z) = (=) +1l(y))

(z(1+62) +y(1+68,)) (1+6,)

= (z+y)+a (0 +3.)+y- (0 +03.) + (20,0, + yd,0.)
(x+y)+x- (0 +0.)+y-(0y+0.)

Q

absolute error = fl(2) —(z+y) =2 (0 +9.) +y- (0, +9>)
T

= x-9 + y-dy + (v+y)-0
x Y- Oy (y) - 6.
abs. err. abs. err. round off err
for x for y

propagated error

f(z) — (= +y) _ 20z +y9,

relative error = 0
rT+y Tty ~~~
—_———
propagated err round off err

1.4 Loss of significance

This typically happens when one gets too few significant digits in subtraction.

For example, in a 8-digit number:
Ir = 0.d1d2d3 s dg x 107¢

dy is the most significant digit, and dg is the least significant digit.
Let y = 0.b1b2b3 - - - bg x 107%. We want to compute x — .

14 CHAPTER 1. COMPUTER ARITHMETIC

If b1 = dq, by = do, b3 = d3, then
x — 1y = 0.000c4c5c6c7¢8 X 107¢

We lose 3 significant digits.

Example 1. Find the roots of 22 — 40z + 2 = 0. Use 4 significant digits in the
computation.

Answer. The roots for the equation az? + bx + ¢ = 0 are

T2 = 2_1a <—b £V — 4ac>

In our case, we have
12 =20+ V398 =~ 20+ 19.95

SO
21 ~ 204 19.95 = 39.95, (OK)

To &~ 20 — 19.95 = 0.05, not OK, lost 3 sig. digits

To avoid this: change the algorithm. Observe that z1z9 = ¢/a. Then

c 2

— = ——— =~ 0.05006
axry 1-39.95

T =

We get back 4 significant digits in the result.

1.5 Review of Taylor Series

Given f(z), smooth function. Expand it at point x = c:
/ 1 " 2 1 " 3
fla) = fle) + fle)w =) + 5 /)@ — o) + 1 f7 o)z — e + -
or using the summation sign

fla) =3 P — o
k=0

This is called Taylor series of f at the point c.

Special case, when ¢ = 0, is called Maclaurin series:

F() = F0) + F/O)z + 5 £/ (0% + 2 /(O + =Y

1.5. REVIEW OF TAYLOR SERIES

Some familiar examples

> zk 2 al
T . - -
e I 1+:E—|-2!+3|+ , |z| < oo
k=0
o0 2k+1 3 5 7
- — T A T
sinz =) (1) e T T R
k=0
o0 2%k 2 .4 6
_ R rr T o
cosx = Z(1) ol 1-— 5 +4! Gl +-e |z| < oo
k=0
1 o0
1 = b = 1ttt rat lz] <1
- k=0
etc.

This is actually how computers calculate many functinos!
For example:
N
S
— k!
for some large integer NV such that the error is sufficiently small.

Example 1. Compute e to 6 digit accuracy.

Answer. We have

IR B BN
e=e =1+ +g+§+a+a+“'

And

L. 0.5

g — .

L. 0.166667

g - .

1

T 0.041667

1

o = 0.0000027 (can stop here)
" 1111 1

e~1+1+ —|— |+ —i— ot - — = 2.71828

3! o! 9!

Error and convergence: Assume f*)(z) (0 < k < n) are continuous functions. Call

n

folw) = FB)@ — o)

=] =

k=0

15

16 CHAPTER 1. COMPUTER ARITHMETIC

the first n + 1 terms in Taylor series.
Then, the error is
= 1 1
— _ _ = (k) Nk & p(n+l) o \n+1
B = f@)) = 3 @ = = g /@@ o
k=n-+1
where £ is some point between z and c.

Observation: A Taylor series convergence rapidly if x is near ¢, and slowly (or not at
all) if x is far away from c.

Special case: n = 0, we have the “Mean-Value Theorem”:

If f is smooth on the interval (a,b), then

f(a) = f(b) = (b—a)f'(¢), for some ¢ in (a,b).

See Figure 1.3.

2
b
Figure 1.3: Mean Value Theorem

This implies
f(b) — fla)
b—a

So, if a,b are close to each other, this can be used as an approximation for f’.

f1©) =

Given h > 0 very small, we have

O ;

oy o @)= f@—h)
@) ~ :

) ~ L@t = foh)

1.5. REVIEW OF TAYLOR SERIES 17

Another way of writing Taylor Series:

=1 1
flx+h) = E Hf(k)(x)hk = E Ef(k)(iﬂ)hk + Ent1
k=0 k=0
where
=1 1
E i1 = Z RV hE = (n+1) n+1
+1 k:%H—l k!f (v) T 1)!f (E)h

for some & that lies between x and x + h.

18

CHAPTER 1.

COMPUTER ARITHMETIC

Chapter 2

Polynomial interpolation

2.1 Introduction

Problem description:

Given (n + 1) points, (z;,y;), i = 0,1,2,--- ,n, with distinct z; such that
To < T < Ty < - < T,
find a polynomial of degree n
P, (z) =a0+ a1z + asx® 4 - + apz”
such that it interpolates these points:

Pn(xz):yu i:071727"'7n
Why should we do this?

e Find the values between the points;

e To approximate a (probably complicated) function by a polynomial

Example 1. Given table
x| 01]2/3
yi |1]0]0.5

Note that
y; = cos(m/2)x;

Interpolate with a polynomial with degree 2.
Answer. Let

Pg((ﬂ) =aptaixr+ CLQ%Z

19

20

Then

z=0,y=1
z=1 y=0
r=2/3, y=0.5

In matrix-vector form

CHAPTER 2. POLYNOMIAL INTERPOLATION

PQ(O) = ag = 1
Py(1)=ap+a; +ay=0
P2(2/3) =ag + (2/3)&1 + (4/9)&2 =0.5

1 0 0 ao 1
1 1 1 ar]l =120
1 2 2/ \a 0.5
Easy to solve in Matlab (homework 1)
ag = 1, a] = —1/4, as = —3/4.
Then) 3
Py(z)=1- Vi sz.
Back to general case with (n + 1) points:
Pn(xl):ylu i:071727”'7n
We will have (n + 1) equations:
P, (x0) = yo ap + voar + xgas + - + xha, = yo
P,(x1) =wn ap + 101 + xiag + - +ala, = yi
Pn(xn) = Yn a0+xnal+xia2+"'+xzan = Un
In matrix-vector form
1 x :E% xy ag 0
1oz af | | @ (7
1 =z, ‘ng xﬁ Qnp, Yn
or
Xai=9y
where
x (n+1) x (n+ 1) matrix, given, (van der Monde matrix)
a unknown vector, (n + 1)
g given vector, (n+ 1)

2.2. LAGRANGE INTERPOLATION

Known: if x;’s are distinct, then X is invertible, therefore @ has a unique solution.
In Matlab, the command vander([z1,z2, - ,x,]) gives this matrix.
But: X has very large condition number, not effective to solve.

Other more efficient and elegant methods

e Lagrange polynmial

e Newton’s divided differences

2.2 Lagrange interpolation

Given points: xg, T1, - ,Tp

Define the cardinal functions: lo,ly,--- I, :€ P™ (polynomials of degree n)

ll(‘r])_&]_{o , Z;é]

The Lagrange form of the interpolation polynomial is

i=0,1,--,n

P,(x) = le(x) - i
=0

We check the interpolating property:

n
Po(a;) =D L) -yi=y; Vi
i=0
l;(x) can be written as
- T — Ty
L) =]
e\ — Ty
J=0,j#i
Tr — X r — X r — Tj—1 L — Tj41 r — Tp

€Tj — Xy Tj— 1 T — Xj—1 Tj — Ti41 LTj — Tp
One can easily check that [;(z;) = 1 and [;(x;) = 0 for ¢ # j, i.e., li(x;) = &;;.

Example 2. Consider again (same as in Example 1)

x| 01]2/3
yi |1]0] 0.5

Write the Lagrange polynomial.

22 CHAPTER 2. POLYNOMIAL INTERPOLATION

Answer. We have

x—2/3 xz—1 3 2

b@) = g5 0=1 ~ 2@ -
z—0 z—1 9
W) = sp—5 23=1 ~ ~2*- b
s = g e - e
Py(x) = lo(z)yo + li(w)y1 + l2(2)ye
= §(ac—2)(95—1)—gac(zn—l)(O.S)—FO
2 3 2
3 1
= —Zw2—zx—|—l

This is the same as in Example 1.

Pros and cons of Lagrange polynomial:

e Elegant formula, (4)
e slow to compute, each [;(x) is different, (-)

e Not flexible: if one changes a points z;, or add on an additional point ,41, one
must re-compute all /;’s. (-)

2.3 Newton’s divided differences

Given a data set
i |z @ | | @ |

vilwo v |- |wm]

n=0 : Py(zr)=1yo

n=1 : Pi(z)=Py(z)+ a1z — x0)
Determine a;: set in = = x1, then Pj(xz1) = Py(z1) + a1(x1 — x0)
S0 Y1 = Yo + a1(x1 — @o), We get a1 = %

n=2 : Px)=P(x)+a(r —x0)(z— 1)
set in & = x9: then yy = Py(x2) + ag(x2 — x0)(x2 — 1)

Y2 — Pi(x2)
(w2 — mo) (22 — 71)
General expression for a,:

SO a9 =

2.3. NEWTON’S DIVIDED DIFFERENCES

23

Assume that P,_;(z) interpolates (x;,y;) for i =0,1,--- ,n—1. We will find P, (z) that

interpolates (x;,y;) for i =0,1,--- ,n, in the form
P.(z) = Py_1(x) + an(z — xo)(z — 1) -+ (& — Zpp—1)

where
Yn — Pn—l(xn)

(Tn, — w0) (T — 21) -+ - (T — Tp1)

Ay =

Check by yourself that such polynomial does the interpolating job!

Newtons’ form:

pn(x) = ap+a1(z —x) + az(z — zo)(z —x1) + - -

+anp(x —x0)(x —21) - (T — Tpp1)
The constants a;’s are called divided difference, written as
ap = flzol, a1 = flwo, 1] ---a; = flzo, 1, @il
And we have (see textbook for proof)

f[xlawla'” ,Z’k] - f[flf(),xl,“‘ 7‘7:/6—1]

f[flf(),flfl,“‘ 7:Ek‘] =
T — Zo

Compute f’s through the table:
zo | flzol = yo

z1 | flzi] =y | flro,71] = %ﬁ?d
zo | flrel =y2 | flr1,22] = % flzo, 1, 29] = -+
Tn f[xn] = UYn f[xn—la$n] = % f[$n—2a$n—la$n] =

f[:EO)xl?"' 7:En]

Example : Use Newton’s divided difference to write the polynomial that interpolates

the data
zi |[0]1]2/3] 1/3 |
yi | 1]0]1/2]0.866 |

Answer. Set up the trianglar table for computation

0

1 0

2/3 | 0.5 -1.5

1/3 || 0.8660 | -1.0981 | -0.6029 | [0.4413] |

24 CHAPTER 2. POLYNOMIAL INTERPOLATION

So

Py(z) =[1]+[-1]e +[-0.75 Je(x — 1) +[0.4413 Je(z — 1)(x — 2/3).

Flexibility of Newton’s form: easy to add additional points to interpolate.

Nested form:

Pn(x) = ao+a1(az—xo)++a2(a:—a;0)(x—x1)+---
+an(z —xo)(x — 1)+ (T — Tp—1)
= ap+ (z—x0) (a1 + (x —z1) (a2 + (z — z2)(az + -+ + ap(x — xp—1))))

Effective to compute in a program:

® D =an
e fork=n—1n—-1,---,0
— p=plx —x) + ak

e end

Some theoretical parts:
Existence and Uniqueness theorem for polynomial interpolation:

Giwven (x;, ;)i with z;’s distinct. There exists one and only polynomial P,(x) of
degree < n such that
Pn(xz):ylv i:0717"'7n

Proof. : Existence: OK from construction

Uniqueness: Assume we have two polynomials, call them p(x) and ¢(x), of degree < n,
both interpolate the data, i.e.,
p(wl) = Yi, q(xl):yla 120717 , N

Now, let g(z) = p(x) — q(z), which will be a polynomial of degree < n. Furthermore,
we have

So g(x) has n+ 1 zeros. We must have g(x) = 0, therefore p(z) = q(z).

2.4. ERRORS IN POLYNOMIAL INTERPOLATION 25

2.4 Errors in Polynomial Interpolation

Given a function f(x), and a < x < b, a set of distinct points z;, i = 0,1,--- ,n, and
x; € [a,b]. Let P,(x) be a polynomial of degree < n that interpolates f(z) at x;, i.e.,

P, (z;) = f(xy), 1=0,1,---,n

Define the error

Theorem There exists a point £ € [a,b], such that

n

Fo(e) H(:E — i), for all x € [a,b].

=0

1

ew) = (n+1)!

Proof. . If f € P, then f(z) = P,(x), trivial.
Now assume f ¢ P,. For x = x;, we have e(x;) = f(z;) — Py(x;) = 0, OK.
Now fix an a such that a # z; for any i. We define

n

W(z) = H(az —2;) € Pny1

and a constant

and another function
p(x) = f(x) = Po(x) — W ().
Now we find all the zeros for this function ¢:
and
pla) = fla) = Pu(a) — cW(a) =0
So, ¢ has at least (n + 2) zeros.

Here goes our deduction:
o(z) has at least n+2 zeros.
¢'(z) has at least n+1 zeros.
¢"(x) has at least N Zeros.

@) (z) has at least 1 zero. Call it €.

26 CHAPTER 2. POLYNOMIAL INTERPOLATION

So we have
P (€) = D€ = 0 — W (g) = 0.
Use
WD = (n 4 1)!
we get (
(1) rey — air(nd1) ey _ 4 (@) = Pala)
Change a into x, we get
_ f(p) __ b e b T — o
o) = 1) = Pae) = (g O OW) = (gl 0O [T 0
Example n =1, xg =a,21 = b, b > a.
We have an upper bound for the error, for z € [a, b],
1 1
le(@)] = 5 7)) - [z — a)(z = b)| < 5 Hf"H =3 "] (0=

Observation: Different distribution of nodes x; would give different errors.

Uniform nodes: equally distribute the space. Consider an interval [a,b], and we
distribute n 4+ 1 nodes uniformly as

x; = a+ih, h:b , i=0,1,---,n.

One can show that

. 1
H\x—xll < Zh"H'n!
=0

(Try to prove it!)

This gives the error estimate

le(@)] € 77—

‘f n+1 ‘hn—i-l < Mn+1 pntl

n+1 4(n+1)

where

= s 0]

Example Consider interpolating f(x) = sin(7z) with polynomial on the interval [—1, 1]
with uniform nodes. Give an upper bound for error, and show how it is related with
total number of nodes with some numerical simulations.

2.4. ERRORS IN POLYNOMIAL INTERPOLATION 27

Answer. We have
‘f(n+1)($)‘ < qtl

so the upper bound for error is

7.[.n+1 2 n+1
e(w)] = 1£(2) ~ Pa@)] € g5 (a) .

Below is a table of errors from simulations with various n.

n ‘ error bound ‘ measured error
4 | 48 x 1071 1.8 x 1071
8 | 3.2x10°3 1.2 x 1073
16 | 1.8 x107? 6.6 x 10710

Problem with uniform nodes: peak of errors near the boundaries. See plots.

Chebychev nodes: equally distributing the error.
Type I: including the end points.

For interval [-1,1] : &; =cos(im), i=0,1,---,n

For interval [a, b : Z;=3(a+b)+3(b—a)cos(im), i=0,1,---,n

With this choice of nodes, one can show that

n n
H]w—ik\ = 27" < H\x—xk
k=0 k=0

where xj is any other choice of nodes.
This gives the error bound:

1

(@)l < (n+1)!

£ (@) 27,

Example Consider the same example with uniform nodes, f(x) = sinwz. With Cheby-

shev nodes, we have
1

n+lo—n
7(71_'_1)!% 27"

le(z)] <
The corresponding table for errors:

n ‘ error bound ‘ measured error
4 | 1.6 x 1071 1.15 x 1071
8 | 3.2x107¢ 2.6 x 107*
16 | 1.2 x 10711 1.1 x 1071

28 CHAPTER 2. POLYNOMIAL INTERPOLATION

The errors are much smaller!

Type II: Chebyshev nodes can be chosen strictly inside the interval [a, b]:

%+ 1
m+ 2"

1 1
Fi= La)+ (b a)eos(otTm), i=01m

See slides for examples.

Theorem If P,(x) interpolates f(x) at x; € [a,b], i =0,1,--- ,n, then

f(:E) - Pn(ﬂj‘) = f[:Enylv U 7337”33] : H(x - $i)7 Va ?é Xy
i—0

7

Proof. Let a # x;, let g(x) be a polynomial that interpolates f(z) at zg,z1, - , Zp, G-
Newton’s form gives

q(z) = Po(x) + flwo, 21, , Zn, a] H(f — ;).
=0

2

n

fla) = qa) = Pu(a) + flzo,x1, - 2n,a] [[(a —).

=0

Switching a to x, we prove the Theorem.

As a consequence, we have:

f[xmxlf" 7‘Tn] :%f(n)(§)7 §€ [avb]'

Proof. Let P,_1(z) interpolate f(x) at xg,--+ ,2,—1. The error formula gives

n

Foa) = Paslan) = = f OO T[(n — i), €€ (@b
From above we know

f(@n) = Poo1(zn) = flxo, -+ 0] H(wn —)

2.5. NUMERICAL DIFFERENTIATIONS 29
Comparing the rhs of these two equation, we get the result.

Observation: Newton’s divided differences are related to derivatives.

n=1 : flzo, 1] = f(§), § € (zo,71)
n=2 : flrog,z1,22) = f"(). Let g = x — h, 11 = x,x9 = x + h, then

Flao, 21, 22] = 55 1f (e 4+) = 20 (@) + fa + W) = 2f(©), €€ lw—hoz+h]

2.5 Numerical differentiations

Finite difference:

(1) fla) ~ 7 (@ +h) - ()

@) fla) ~ (@)~ f@—h)

3) fl(z) =~ %(f(a:+h)—f(3:—h)) (central difference)
f'@) ~ oy () = 20(@) + fo = 1)
F(a)

z—h T z+h

Figure 2.1: Finite differences to approximate derivatives

Truncation erros in Taylor expansion

30 CHAPTER 2. POLYNOMIAL INTERPOLATION

Fla+h) = F@)+hf @)+ h 7" @) + h* (@) + O(hd)

6
Jle—h) = f@) = hf'e) + SH2 @) = h (@) + O

Then,

FeX W =W play 4 Ihs"(a) +00) = £/(@) + O), (1 order)
similarly

FEVZTEZR) piay — Ihf"(a) + O2) = £/(@) + O), (1 order)
and

f(a: + h)z—hf((L' — h) _ f’(ac) . %h?fm(l') + O(h2) — f’(l‘) + O(hz), (2"dorder)

finally
ot W =210 2 @) iy L 9 (@)1 000 = @)+ 01, (2"order)

Richardson Extrapolation : will be discussed later, in numerical integration, with
Romberg’s algorithm

Chapter 3

Piece-wise polynomial
interpolation. Splines

3.1 Introduction

Usage:

e visualization of discrete data

e graphic design —VW car design
Requirement:

e interpolation

e certain degree of smoothness
Disadvantages of polynomial interpolation P, (z)

n-time differentiable. We do not need such high smoothness;

e big error in certain intervals (esp. near the ends);
e no convergence result;

e Heavy to compute for large n

Suggestion: use piecewise polynomial interpolation.

Problem setting : Given a set of data

zlto|ti] - | ta
ylwo || [wm

31

32 CHAPTER 3. SPLINES

Find a function S(z) which interpolates the points (¢;, y;)i-
The set tg,t1, - ,t, are called knots.

S(z) consists of piecewise polynomials

80(:E)’ to<z<t
Si(x), th<z<t
spe] 5 \<r<th
Sn—1($)7 th—1 <z <t,

S(x) is called a spline of degree n, if
e S;(z) is a polynomial of degree n;
e S(x) is (n — 1) times continuous differentiable, i.e., for i = 1,2,--- ;n — 1 we have
Si—1(t:)) = Si(t),
ia(t) = Siti),

Commonly used ones:
e n = 1: linear splines (simplest)
e n = 1: quadratic splines

e n = 3: cubic splines (most used)

3.2 First degree and second degree splines

Linear splines: n = 1. Piecewise linear interpolation, i.e., straight line between 2
neighboring points. See Figure 3.1.

So
Si(z) = a; + bz, 1=0,1,-,n—1

Requirements:

So(to) = wo
Si—1(ti) = Siti)) = i, 1=1,2,--- ;n—1
Sn—l(n) = Un-

Easy to find: write the equation for a line through two points: (¢;,v;) and (¢;+1, Yit+1),

Siw) =y + I Y), =01, n— L.
tiv1 — 1

3.3. NATURAL CUBIC SPLINES 33

S(z) Y1
S
i < Y2
| kS 95
Yo, : : X
X : : :
1 1 1 1 ':L'
to t to i3

Figure 3.1: Linear splines
Accuracy Theorem for linear splines: Assume ty < t; <ty < --- < t,, and let
h = HlaX(ti+1 — ti)
(2

Let f(z) be a given function, and let S(z) be a linear spline that interpolates f(x) s.t.

We have the following, for x € [to, t,],

(1) If f’ exists and is continuous, then
1 /
F(@) — 8()| < gh max|7'(x)].

(2) If f" exits and is continuous, then

/() - S()] < gh* max | (2)].

Quadratics splines. read the textbook if you want.

3.3 Natural cubic splines

Given ty < t1 < -+ < t, we define the cubic spline S(z) = S;(x) for t; < x < t;11. We
require that §,S8’, 8" are all continuous. If in addition we require S{/(t9) = S)/_; (t,) = 0,
then it is called natural cubic spline.

34 CHAPTER 3. SPLINES

Write
Si(x)zaiwg—l-bixz—i-cix—kdi, i=0,1,---,n—1
Total number of unknowns= 4 - n.

Equations we have

equation number
(1) Sz(tz):yu iZO,l,"',n—l n
(2) Sl(tl-i-l) = Yi+1, 220717 7n_1 n
(3) Si(tiy1) = Sj 1 (ti), i=0,1,--- ., n—2 n—1 total = 4n.
(4) Sg/(ti+1) :Sﬁ_l(ti), iZO,l,"' ,n—2 n—1
(5) Sy(to) =0, 1
(6) S,_i(ta) =0, L.

How to compute S;(x)? We know:
S; : polynomial of degree 3
S/ . polynomial of degree 2
S’ . polynomial of degree 1
procedure:
e Start with S/(z), they are all linear, one can use Lagrange form,

e Integrate S/ (x) twice to get S;(z), you will get 2 integration constant

e Determine these constants by (2) and (1). Various tricks on the way...

Details: Define z; as
2z =8"(t), i=1,2,---,n—1, 20=12,=0

NB! These z;’s are our unknowns.
Introduce the notation h; = t;411 — ;.

Lagrange form
S/ (@) = “H (2 — 1) = 2 (2~ tipa).

hi hi
Then
/ _ Al N2 P 4 210D,
Si(z) = o, (x —t;) 2hi(x tiv1)°+C; — D;
Zi+1 3 Zj 3
i = =) ——(x -t i(@ —ti) — Di(x — tiy1).
Sie) = =t = Eor =) + Cile —)~ Dile —tis)

(You can check by yourself that these S;,S! are correct.)

3.3. NATURAL CUBIC SPLINES

Interpolating properties:
(1). Si(t:) = yi gives
hi

1 "
3) i
—hi)? — Di(=h;) = ~zhi + D;h; D=2 _1,

Zi

" 6h;

Yi =

(2). Si(ti+1) = yit1 gives

Zi+1 Yi+1 h;
Yirl = éhi B+ Cihiy, = C;= ;lz - Elzi-i-l-

We see that, once z;’s are known, then (Cj, D;)’s are known, and so S;, S/ are known.

Zit1 Z; Yie1 hi
S(@) = B0 - Ze -t + (B2 - B) -t
vi hi
_ <h—Z — EZZ> (l‘ — ti+1)-
/ Zi+1 2 Zi oVi+l — Yi Zi4l — %
(z) = —)= (w1 — hi.

How to compute z;’s? Last condition that’s not used yet: continuity of S'(x), i.e.,

Z/—l(tl):‘sz/(tl)7 Z:1727 ,7’L—1

We have
/ 24 2 Yi+1 —Yi Ziyl — %
(L) = —5-(—h - h;
b;
1 1
= _Ehizi-i-l - ghm + bi
) = 1z- hi +lz-h~ +b;
i—1\lg - 6 i—11t5—1 3 illi—1 i—1

Set them equal to each other, we get

hi—1zie1 + 2(hi—1 + hi)zi + hizipr = 6(b; — bi—1), i=1,2,---,n—1
20 = zp = 0.

In matrix-vector form:

H-7=10
where
2(ho + h1) h
hq 2(h1 + ha) ha
ho 2(h2 + hg) hs
H = . . .
hin—3 2(hp—3 + hp—2) P —2

hn—2 2(hn—2 + hn—l)

36 CHAPTER 3. SPLINES

and
21 6(b1 — bo)
Z9 6(b2 — bl)
N zZ3 N 6(b3 — bg)
Z= , b=)
Zn—2 G(bn—2 - bn—3)
Zn—1 6(bn—1 - bn—2)

Here, H is a tri-diagonal matrix, symmetric, and diagonal dominant
21hi—1 + hi| > |hi| + |hi—1]

which implies unique solution for Zz.

See slides for Matlab codes and solution graphs.

Theorem on smoothness of cubic splines. IfS is the natural cubic spline function
that interpolates a twice-continuously differentiable function f at knots

a=thg<t1 <---<tp,=0b

then

/ab [8"()]? dx < /ab [f"(2)]? da.

Note that [(f”)? is related to the curvature of f.

Cubic spline gives the least curvature, = most smooth, so best choice.

Proof. Let
Then

and f"=8"+¢", so
(f//)2 — (S//)2 4 (g//)2 4 28//9//

b b b b
= /(f”)2da::/ (3”)2dx—|—/ (g”)2dx+/ 23”gﬂdw

a

Claim that ,
/ S//g// dfl: — 0

/ (1 de / (82 de

a

then this would imply

3.3. NATURAL CUBIC SPLINES 37

and we are done.

Proof of the claim: Using integration-by-parts,

b b
o / S///g/ dﬂ;‘
a a

Since g(a) = g(b) = 0, so the first term is 0. For the second term, since 8" is piecewise
constant. Call

/b S//g// d:E — S//g/

a

c; = S///(:E), for x € [ti,ti+1].

Then
b n—1 tiv1 n—1
[smdar=Y e [d@de =3 alottin) - a(t)] = o
a i=0 7l i=0

7

(b/c g(ti) = 0).

38

CHAPTER 3. SPLINES

Chapter 4

Numerical integration

4.1 Introduction

Problem: Given a function f(x) on interval [a, b], find an approximation to the inte-
gral

1= [1w
Main idea:
e Cut up [a,b] into smaller sub-intervals
e In each sub-interval, find a polynomial p(x) ~ f(x)

e Integrate p’(z) on each sub-interval, and sum up

4.2 'Trapezoid rule
The grid: cut up [a, b] into n sub-intervals:
ro=a, x;<Tit1, Tpn=0~=0

On interval [z;,x;41], approximate f(z) by a linear polynomial

We use

/%Hl f(z)dr ~ /m+1 p(z) dx = % (f(iv1) + [(@) (Tig1 — i)

40 CHAPTER 4. NUMERICAL INTEGRATION

T0=a T Titl Tp =10

Figure 4.1: Trapezoid rule: straight line approximation in each sub-interval.

Summing up all the sub-intervals

/abf(x)dzn = Z/:i+lf(3:)d:n

Q

+
’Es
"
B

Uniform grid: h = I’_Ta,xiﬂ —x; = h,

b
[t@ds = 33 (o) + £la)

S0 we can write

Error estimates.

4.2. TRAPEZOID RULE 41

Known from interpolation:

F(@) = p(x) = 30" —) — wis)

Basic error: error on each sub-interval:

Bri(fih) = 3'€) [@-m)@-si)ds = - SHFE).
Total error:
Br(fh) = S Bn(rin -3 - — - L[S e Lo
T\J> s Ti\J s i 12 4 12 — i n h
1= 1= 1= SN——"
= f"(¢) =n
Total error is -
Er(fih) = = 1*f"(©), ¢€ (ab).
Error bound b—a,)
Er(fih) < —5-h* max |f"(@)].

Example Consider function f(xz) = e®, and the integral

I(f):/o2exdaz

Require error < 0.5 x 10~4. How many points should be used in the Trapezoid rule?
Answer. We have

fl(z)y=¢", f"(z)=¢€¢", a=0, b=2
SO

a1l =

By error bound, it is sufficient to require
1
|Er(f;h)] < Eh%? <0.5x1074
= h?2<05x1071x6xe?~4.06x107°

2
= o= h < 4/4.06 x 10~° = 0.0064
n

=

We need at least 314 points.

42 CHAPTER 4. NUMERICAL INTEGRATION

4.3 Simpson’s rule

Cut up [a, b] into 2n equal sub-intervals

b—a
Zo = a, w2n:b7 hz—a xi-ﬁ-l_xi:h
2n

Consider the interval [x9;, 2;12]. Find a 2nd order polynomial that interpolates f(z) at
the points

L2i, 2441, L2i+2

T2 L2i+1 T2i+42

Figure 4.2: Simpson’s rule: quadratic polynomial approximation (thick line) in each
sub-interval.

Lagrange form gives

(z — x2;)(z — T2i42)
(2i41 — 22i) (@241 — T2i42)

(x — x2i41) (@ — T2i42)
(w25 — @2i41) (w25 — T2i42)
T — X2)\ X — X241
+f(x2i4+2) (i)(i+1)
(2i42 — x2i)(T2i42 — T2i41)

= 2—}112f($2i)($ — T9i41)(T — Taiy0) — %f(wmﬂ)(w — 29)) (T — Toi42)

plx) = flz) + f(z2i41)

+#f(:1}2i+2)(l' — ZEQZ)(:L' - $2i+1)

4.3. SIMPSON’S RULE 43

Then

T2i+2

- %f(l?i)f(‘f%)/ (2 — i1)(z — Toipn) d

x24

2
Zp3
3

1 T2i42
—ﬁf(ﬂfmﬂ) / (# — w9;)(x — w2442) dx

24

4

_Zp3
3
1 T2i42
+Wf($2i+2)/ (# — w9;) (7 — w2441) dx
T2;

2
Zp3
3

h

= 3 [f (w25) + 4f (w2541) + f(72i42)]
Putting together
b
[@ ~ sin)
n—l rmgils
= Z/ p'(z)dx
i=0 v P2
h n—1
= 3 Z [f (z2i) + 4f (v2i41) + f(22i42)]
i=0
1 B 4 1
1 4 1= 2
XT2i—2 T2i—1 T2 L2341 L2i4-2

Figure 4.3: Simpson’s rule: adding the constants in each node.

See Figure 4.3 for the counting of coefficients on each node. Wee see that for g, z2, we
get 1, and for odd indices we have 4, and for all remaining even indices we get 2.

The algorithm looks like:

n n—1
S(ih) = L | flao) + 43 Flaain) +2 3 Flaai) + Flaan)

3 i=1 1=1

44 CHAPTER 4. NUMERICAL INTEGRATION

Error estimate. basic error is

1
—%h5f(4) (&), &i € (w24, T2i42)

SO

n—1
Bs(f:h) = I(f) = S(f:h) = — 61 3 fO(E) - - 2o = -2t f0(g), g(a,b)
=0
Error bound

< 4 FO(
Bs(f31)| < “gh ma | 70(a)].

Example With f(z) = e® in [0,2], now use Simpson’s rule, to achieve an error <
0.5 x 10~%, how many points must one take?

Answer. We have

2
|Es(f;h)] < @h‘*é <0.5x 1074

= h' <051 x180/e* =1.218 x 1072
= h <0.18682
b—a

= n =
Y

We need at least 2n + 1 = 13 points.
Note: This is much fewer points than using Trapezoid Rule.
4.4 Recursive trapezoid rule

These are called composite schemes.

Divide [a, b] into 2" equal sub-intervals.

b—a 1
hn = ECTRE b1 = §h
So
1 1 on 1
T(fihn) = hn-|5f(@)+5f(0)+ ;f(a—l—z’hn)
antl_1

T(fihns1) = hr- |5f(@) + f Z fla+ihni1)

4.5. ROMBERG ALGORITHM

n=1
n=2
n=3
n=4
n=>5
n==~0
n="7

Figure 4.4: Recursive division of intervals, first few levels

We can re-arrange the terms in T'(f; hp41):

ha,

T(fihpyr) = 5

1

2m—1 2" —1

i=1 j=1
on_1

= ST(iha) +husn 3 flat 27+ Dhosn)

j=1

SF@ + S FO) + Y Flat i)+ 3 fa+ 2+ Do)

45

Advantage: One case keep the computation for a level n. If this turns out to be not

accurate enough, then add one more level to get better approximation. = flexibility.

4.5 Romberg Algorithm

If (") exists and is bounded, then we have the Euler MacLaurin’s formula for error

E(f;h) = I(f)—=T(f;h) = ash® + ash* + agh® + --- + a,h"

B(fi5) = 1)~ T(fi5) = ax(5)* + as(5)* + as(5)° + - + anls

h
2 2 2

Here a,, depends on the derivatives f().

‘We have

The goal is to use the

T(f; h) + a2h2 + a4h4 + CL6h6 + -

T(; 2) + ax() + as(3)* +as(5)° -+ an

2 2 2

2

h)n

2

)n

2 approximations T'(f;h) and T(f; %) to get one that’s more
accurate, i.e., we wish to cancel the leading error term, the one with h2.

Multiply (2) by 4 and subtract (1), gives

4-T(f;h/2) —T(f;h) + ayh* + agh® + - -
4 1
gﬂﬁwm—gﬂﬁm+@m+%ﬁ+~-

U(h)

46 CHAPTER 4. NUMERICAL INTEGRATION

R(h) is of 4-th order accuracy! Better than T'(f;h). We now write:

T(f;h/2) —T(f;h)

U =T(fh/2) + =2 —

This idea is called the Richardson extrapolation.

Take one more step:

(3) I(f) = U(h)+ ash* +agh® + - -
(4) I(f) = U(h/2)+as(h/2)" + ag(h/2)° + - --

To cancel the term with h': (4) x 2% — (3)
' = DI(f) = 2'U(h/2) —U(h) + agh® +---

Let
V,(h)::24U’(h/2)—-U(h):U(h/2)+

U(h/2) = U(h)
24 1 '

24 —1

Then
I(f) =V (h) +agh® + -
So V'(h) is even better than U(h).
One can keep doing this several layers, until desired accuracy is reached.

This gives the Romberg Algorithm: Set H = b — a, define:

RO.0) = T(f:H) = T (f(@)+ /0)
ROL0) = T(f;H)?)
R(2,0) = T(f;H/(2)

R(n,0) = T(f;H/(2"))

Here R(n,0)’s are computed by the recursive trapezoid formula.
Romberg triangle: See Figure 4.5.
The entry R(n,m) is computed as

R(n,m—1)—R(n—1,m—1)

R(n,m) = R(n,m —1) + S 1

Accuracy:
H

I(f) = R(n,m) + O(h2m+1)), h=on

Algorithm can be done either column-by-column or row-by-row.

Here we give some pseudo-code, using column-by-column.

4.6. ADAPTIVE SIMPSON’S QUADRATURE SCHEME
£(0,0)

R(1,0) R(1,1)

R(2,0) R(2,1) <= R(2,2)

R(3,0) R(3,1) R(3,2) — .

R(n,0) R(n,1) R(n,3) e Rin.m)

Figure 4.5: Romberg triangle

R =romberg(f,a,b,n)

R =n x n matrix
h=b—a; RO,1) = [f(a) + F(B)] % h/2:
fori=1ton—1do %1st column recursive trapezoid
R(i+1,1) = R(i,1)/2;
h=h/2;
for k =1to 2! do
R(i+1,1)=R(i+1,1)+h* f(a+ (2k — 1)h)
end
end
forj=2tondo %2 to n column
for i = j ton do
R(i,j) = R(i,j = 1) + g [R(i.j = 1) = R(i = 1,5 = 1)]
end

end

4.6 Adaptive Simpson’s quadrature scheme

Same idea can be adapted to Simpson’s rule instead of trapezoid rule.

For interval [a,b], h = bg—“’

b—a a+b

Sifa,b) = = | (@) + 47 (S

)+ f(b)

Error form: !

e, €(a,b)

47

48 CHAPTER 4. NUMERICAL INTEGRATION

Then
I(f) = Sl[a’ b] +E1[av b]

Divide [a,b] up in the middle, let ¢ = “TH’.

I(f)la,b] = I(f)la,c] +I(f)[e,b]

= Sila,c] + Eila,] + Sic,b] + Eqle, b]
= SQ [a, b] + Foy [a, b]
where
SQ[CL, b] = 9 [CL, C] + 51 [C, b]
Esla,b] = Eila,c] + Eic,b] = —%(h/Q)5 [f(4)(§1) + (&)

Assume f® does NOT change much, then Ei[a,d] ~ Ei[c,b], and

1 1
Esla,b] =~ 2E1[a,c] = 2§E1[a, b = 2—4E1[a, b]

This gives
Sola,b] — Si[a,b] = (I — Es[a,b]) — (I — Eyi[a,b)) = By — By = 2'Ey — By = 15F,

This means, we can compute the error Fo:

If we wish to have |Es| < e, we only need to require

Sy — 51 -
24 -1 —

This gives the idea of an adaptive recursive formula:

(A) I1=5+F
1
(B) I=5y+Fy=5+—F;

24
(B) % 2* — (A) gives
' —1)I =2'S, — S
2455 — 8y Sy — S
I=—r— =%+

Note that this gives the best approximation when f®) &~ const.

Pseudocode: f: function, [a,b] interval, e: tolerance for error

4.7. GAUSSIAN QUADRATURE FORMULAS 49

answer=simpson(f, a, b,)
compute S and Ss
If | Sy — S1| < 15e

answer= Sy + (S2 — S1)/15;
else

c=(a+0b)/2;
Lans=simpson(f, a, c,&/2);
Rans=simpson(f, ¢, b,e/2);
answer=Lans-+Rans;

end

In Matlab, one can use quad to compute numerical integration. Try help quad, it will
give you info on it. One can call the program by using:
a=quad(’fun’,a,b,tol)

It uses adaptive Simpson’s formula.

See also quad8, higher order method.

4.7 Gaussian quadrature formulas

We seek numerical integration formulas of the form

b
/ f(@)de ~ Agf (o) + Ay f(1) + -+ Anf (i),

with the weights A;, (i =0,1,--- ,n) and the nodes
x; € (a,b), 1=0,1,---,n

How to find nodes and weights?

Nodes z;: are roots of Legendre polynomials ¢,+1(z). These polynomials satisfies

b
[an@de=0. ©<k<n

1,1
qolx) =1
q(x) = =z
3 1
q@(r) = 5332 -3
5 3
a(x) = 51133 — 97

50 CHAPTER 4. NUMERICAL INTEGRATION

The roots are

g : 0
@ : £1/V3
g3 : 0, +£+/3/5

For general interval [a, b], use the transformation:

2z —(a+0b) 1

1
t T az—i(b—a)t—i-g(a—l—b)

so for —1 <t <1 we have a <z <b.

Weights A;: Recall [;(x), the Cardinal form in Lagrange polynomial:

Xr — i
=11 =
j=0,4#i """ Y

A = /b li(x) dx.

—a

Then

There are tables of such nodes and weights (Table 5.1 in textbook).
We skip the proof. See textbook if interested.

Advantage: Since all nodes are in the interior of the interval, these formulas can han-
dle integrals of function that tends to infinite value at one end of the interval (provided
that the integral is defined). Examples:

1 1
/ ztde, / (2% —1)'/3/sin(e® — 1) du.
0 0

Chapter 5

Numerical solution of nonlinear
equations.

5.1 Introduction

Problem: f(z) given function, real-valued, possibly non-linear. Find a root r of f(x)
such that f(r) = 0.

Example 1. Quadratic polynomials: f(z) = 2? + 5z + 6.
fl@)=(@+2)(z+3)=0, = r=-2 r=-3

Roots are not unique.

Example 2. f(z) = 22 + 42 +10 = (v +2)? + 6. There are no real r that would satisfy
f(r)=0.

Example 3. f(z) = 22 + cosz + e® + /= + 1. Roots can be difficult/impossible to find
analytically.

Our task now: use a numerical method to find an approximation to a root.

Overview of the chapter:

e Bisection (briefly)
e Fixed point iteration (main focus): general iteration, and Newton’s method

e Secant method
Systems (*) optional...

o1

52

5.2

CHAPTER 5. NUMERICAL SOLUTION OF NONLINEAR EQUATIONS.

Bisection method

Given f(x), continuous function.

Initialization: Find a,b such that f(a)- f(b) < 0.
This means there is a root r € (a,b) s.t. f(r) = 0.

Let c = “TH’, mid-point.
If f(¢) =0, done (lucky!)
else: check if f(c)- f(a) <0 or f(c)- f(b) <O0.

Pick that interval [a,] or [c,b], and repeat the procedure until stop criteria satis-
fied.

Stop Criteria:

1)
2)
3)
)

4

interval small enough
|f(cn)| almost 0
max number of iteration reached

any combination of the previous ones.

Convergence analysis: Consider [ag, by], co = L;JFO, let 7 € (ap,bg) be a root. The

error:

bo — ao

eo = |r —cof <

Denote the further intervals as [ay,, by,] for iteration no. n. Then

bn—an bo—ao_eo
2 = on+l — 9n’

en=1r—cy| <

If the error tolerance is €, we require e, < ¢, then

by — ag log(b — a) — log(2¢)
>
gntl —° T M= log 2 ’

(# of steps)

Remark: very slow convergence.

5.3

Fixed point iterations

Rewrite the equation f(x) = 0 into the form = = g(z).

Remark: This can always be achieved, for example: x = f(x) + x. The catch is that,
the choice of g makes a difference in convergence.

Iteration algorithm:

5.3. FIXED POINT ITERATIONS

e Choose a start point z,

e Do the iteration x4 1 = xx, £ =0,1,2,--- until meeting stop crietria.

Stop Criteria: Let € be the tolerance
o |z —ap1] <,
o |zk—g(zi)| <e,
e max # of iteration reached,

e any combination.

Example 1. f(z) =z — cosx.
Choose g(z) = cosx, we have © = cos z.

Choose zg = 1, and do the iteration zj1 = cos(xy):
r1 = cosxzg = 0.5403

r9 = cosxp = 0.8576
r3 = cosxo = 0.6543

Tog = cosxge = 0.7390
Toy = cosxog = 0.7391
Tos = cosxoy = 0.7391 stop here

Our approximation to the root is 0.7391.

Example 2. Consider f(z) = e 2*(z — 1) = 0. We see that 7 = 1 is a root.

Rewrite as
r=gx)=e®z-1)+zx

Choose an initial guess zg = 0.99, very close to the real root. Iterations:
xr1 = cosxzg = 0.9886

9 = cosxy = 0.9870
r3 = cosxo = 0.9852

Toy = cosxog = 0.1655
Tog = cosxoy = —0.4338
Tog = coswog = —3.8477 Diverges. It does not work.

Convergence depends on zg and g(z)!

93

o4 CHAPTER 5. NUMERICAL SOLUTION OF NONLINEAR EQUATIONS.

Convergence analysis. Let r be the exact root, s.t., r = g(r).
Our iteration is xp41 = g(zg).

Define the error: e, = xj, — r. Then,

ehr1 = Ty — 7 =g(wp) — 7 =g(zK) —g(r)
q(&)(xr — 1) (& € (x,r), since g is continuous)
= gl(f)ek

= lexa] < |9'(©)] e

Observation:

o If [¢/(§)| < 1, error decreases, the iteration convergence. (linear convergence)

o If |¢'(£)| > 1, error increases, the iteration diverges.

Convergence condition: There exists an interval around r, say [r —a, r+ a] for some
a > 0, such that |¢'(x)| < 1 for almost all x € [r — a,r + a], and the initial guess x¢ lies
in this interval.

In Example 1, g(x) = cosz, ¢'(x) = sinz, r = 0.7391,

|g'(r)| = Isin(0.7391)| < 1. OK, convergence.

In Example 2, we have

glz) = e (@ -1)+a,
Jdx) = —2e%(z—-1)+2 241

With r = 1, we have
‘g'(ﬂ —e?41>1

Divergence.

Pseudo code:

r=fixedpoint(’g’, x,tol,nmax}
r=g(r);
nit=1;
while (abs(r-g(r))>tol and nit < nmax) do
r=g(r);
nit=nit+1;
end

5.4. NEWTON’S METHOD 95

How to compute the error?
Assume |¢'(z)] <m < 1in [r —a,r + al.

We have |ej41] < m |ek|.

This gives
ler] <mleol, el <mler| <m®leol, -+ lex] <mleol
We also have
leo| = |r — ol = [r — @1 4+ @1 — o < [ex] + |21 — wo| < meo| + |z1 — z0
then
leg] < . _1 |z1 — zo], (can be computed)
Put together
eul < oy — .

If the error tolerance is €, then

k — — — —
m T — | <e, = ko (1 —m) k> In(e(1 —m)) —In|z; —
1—m |z — x0] Inm

which give the maximum number of iterations needed to achieve an error < e.

Example cosxz — xz =0, so
r = g(x) = cosz, d(r) = —sinz

Choose g = 1. We know r =~ 0.74. We see that the iteration happens between = = 0
and x = 1. For x € [0, 1], we have

g/ (z)] < sinl =0.8415=m

And z; = coszg = cos 1 = 0.5403. Then, to achieve an error < & = 107°, the maximum
iterations needed is

In(e(1 —m)) —Infry — x| _
Inm -

k> 73.

Of course that is the worst situation. Give it a try and you will find that k = 25 is
enough.

56 CHAPTER 5. NUMERICAL SOLUTION OF NONLINEAR EQUATIONS.

f=) ')

Tyl Tg

Figure 5.1: Newton’s method: linearize f(x) at x.

5.4 Newton’s method

Goal: Given f(x), find a root r s.t. f(r) =0.
Choose an initial guess xg.

Once you have xy, the next approximation xpy; is determined by treating f(z) as a
linear function at xp. See Figure 5.1.

We have
IED
kE— Tk+1
which gives
g

Connection with fixed point iterations:
f(@)=0, = b@)f(x)=0, = z=z-bx)f(z)=g)

Here the function b(z) is chosen in such a way, to get fastest possible convergence. We
have

J(@) =1 V(@) f(z) — b(a) f'(x)
Let r be the root, such that f(r) =0, and r = g(r). We have
g'(r)=1=0b(r)f'(r), smallest possible: |¢'(r)]| = 0.

Choose now
1—b(2)f'(x) =0, = bx)=

we get a fixed point iteration for

5.4. NEWTON’S METHOD o7

Convergence analysis. Let r be the root so f(r) =0 and r = ¢g(r). Define error:

eht1 = |Trg1 — 7| = |g(xr) — g(r)]

Taylor expansion for g(xy) at r:

o(on) = 9(r) + (@ = 1)g' (1) + 5 (on — "), € € (aor)

Since ¢'(r) = 0, we have

o(ex) = g(r) + 5 (@ — 129" (€)

Back to the error, we now have

i = 5ok~ 1) |g(©)] = 56k |9 (©)

Write again m = max, |g” (£)|, we have
ert1 < mejp

This is called Quadratic convergence. Guaranteed convergence if eg is small enough! (m
can be big, it would effect the convergence!)

Proof for the convergence: (can drop this) We have
e1 < megeg
If eg is small enough, such that mey < 1, then e1 < ey.
Then, this means me; < meg < 1, and so
eo <meje; <e;, = me<me <1

Continue like this, we conclude that e < ey for all k, i.e., error is strictly decreasing
after each iteration. = convergence.

Example Find an numerical method to compute y/a using only +, —, *, / arithmetic
operations. Test it for a = 3.

Answer. It’s easy to see that \/a is a root for f(z) = 2> — a.

Newton’s method gives

o f@) o wp—a_m a
FETIR T) 2w, 2 2wy
Test it on a = 3: Choose zo = 1.7.
error
xo=1.7 7.2 x 1072
x; = 1.7324 3.0 x 1074
xr9 = 1.7321 2.6 x 108
xrs3 = 1.7321 4.4 x 10716

Note the extremely fast convergence. Usually, if the initial guess is good (i.e., close to
r), usually a couple of iterations are enough to get an very accurate approximation.

o8 CHAPTER 5. NUMERICAL SOLUTION OF NONLINEAR EQUATIONS.

Stop criteria: can be any combination of the following:

o |z —xp_| <e

o |f(zr) <e

e max number of iterations reached.

Sample Code:

r=newton(’f’,’df’,x,nmax,tol)

n=0; dx=f(x)/df(x);

while (dx > tol) and (£(x) > tol) and (n<nmax) do
n=n+1;
x=x-dx;
dx=f (x)/df (x);

end

r=x-dx;

5.5 Secant method

If f(x) is complicated, f’(x) might not be available.
Solution for this situation: using approximation for f’, i.e.,

flar) = flap—1)

Tl — Tk—1

fan) =

This is secant method:

Advantages include

e No computation of f’;
e One f(x) computation each step;

e Also rapid convergence.
A bit on convergence: One can show that
1
er+1 < Cef, a= 5(1 +/5) ~ 1.62

This is called super linear convergence. (1 < o < 2)

5.6. SYSTEM OF NON-LINEAR EQUATIONS 99

It converges for all function f if zg and 1 are close to the root 7.

Example Use secant method for computing +/a.

Answer. The iteration now becomes

Tt = Tk — (xi —a)(z — 2p-1) o ﬂfi —a
(2 —a) = (z7_; — a) Tk + Thi

Test with a = 3, with initial data x¢y = 1.65, 1 = 1.7.

error
r = 1.7 7.2 x 1072
x9 = 1.7328 7.9 %x 1074
xg = 1.7320 7.3x 1076
xy = 1.7321 1.7 x 1079
x5 = 1.7321 3.6 x 10710

It is a little but slower than Newton’s method, but not much.

5.6 System of non-linear equations

Consider the system
F(f):()) F:(f17f27"'7fn)t7 f:($17$27"'7$n)t
write it in detail:

fl(x17x27”’ 7‘%.71) - O
fQ(IIl'l,II?Q,“‘ 7$n) = 0

fn(fll'l,xQ,“‘ 7$n) = 0
We use fixed point iteration. Same idea: choose Zy. Rewrite as
7= G(%)

The iteration is simply:

L1 = G(Z).

Newton’s mathod:

Fry1 = Tk — Dp(Tp) - F(d)

60 CHAPTER 5. NUMERICAL SOLUTION OF NONLINEAR EQUATIONS.

where Dy () is a Jacobian matrix of f

oh oK Oh
Oox1 Oxo oxy,
0k 0fr = O
D = Oxr1 Oxo Oxy,
ox1 Oxo oxy,

and Dy (7y) ! is the inverse matrix of D¢ (Zy).

Chapter 6

Direct methods for linear systems

6.1 Introduction

The problem:

ary + apre + -+ apxr, = by (1)

9121 + agoo + -+ + agnxy, = b (2)
(A): .

A1 T1 + a2 + - + appn = by (n)

We have n equations, n unknowns, can be solved for z; if a;; are “good”.

In compact form, for equation i:
n
E aijwj:bi, 221,,71
Jj=1

Or in matrix-vector form:

AT = b,
where A € R™", #eIR", beR"
ail a2 - i 1 by
A= {ay} = azy azg - Ay | o T | P_ b.2
Gnl Qp2 -+ Gpp Tn bn,
Our goal: Solve for . — We will spend 3 weeks on it.

Methods and topics:
e Different types of matrix A:

61

62 CHAPTER 6. DIRECT METHODS FOR LINEAR SYSTEMS

1. Full matrix

2. Large sparse system

3. Tri-diagonal or banded systems
4.

regularity and condition number
e Methods

A. Direct solvers (exact solutions): slow, for small systems

x Gaussian elimination, with or without pivoting

x LU factorization
B. Iterative solvers (approximate solutions, for large sparse systems)

x more interesting for this course

x details later...

6.2 Gaussian elimination, simplest version

Consider system (A). The basic Gaussian elimination takes two steps:
Step 1: Make an upper triangular system — forward elimination.
fork=1,2,3,--- ,n—1
(])F(])_(k‘))XZ]Tiv]:]{7+1,]{7+2,,’I’L

You will make lots of zeros, and the system becomes:

a11xy + apxs + - + apry, = by (1)
a9 + -+ + Aoy = b2 (2)

(B): .
AnnTn = bn (n)

Note, here the a;; and b; are different from those in (A).

Step 2: Backward substitution — you get the solutions.

bn
Ty = —
ann
1 - ,
i = bi_ Zaijxj) z:n—l,n—Q,---,l.
A

j=i1+1

Potential problem: In step 1, if some ayy is very close to or equal to 0, then you are in
trouble.

6.3. GAUSSIAN ELIMINATION WITH SCALED PARTIAL PIVOTING

Example 1. Solve

xr1+ T2 + a3 =1 (1)
2x1 + 4xo + 4xg = 2 (2)
31+ 1lze + 1423 = 6 (3)

Forward elimination:

(1) % (=2) +(2) : 209 +2x3 = 0 (2"
(1) % (=3) + (3) : 8o+ 112y = 3 (3)
(2 x(=4)+(3): 3x3=3 (3")

Your system becomes
T1+ax2+23 = 1

200 +2x3 = 0

3%3 = 3
Backward substitution:
r3 = 1
1
Tro = 5(0 — 21‘3) =—1
r, = 1—%2—%3:1

It works fine here, but not always.

6.3 Gaussian Elimination with scaled partial pivoting

First, an example where things go wrong with Gaussian elimination.

Example 2. Solve the system with 3 significant digits.

0.001%1 —Ty = -1 (1)
T 2:L'2 = 3 (2)

Answer. Write it with 3 significant digits

|

|
=
o
(e
—~
—_
~—

0.00100z; —1.00z2
1.00:L'1 2.003}2

|
o
(@)
()
—~
[\
~—

Now, (1) % (—1000) + (2) gives

(1000 4 2)25 = 1000 + 3
= 1.00 - 10%z9 = 1.00 - 10°
To = 1.00

4

63

64 CHAPTER 6. DIRECT METHODS FOR LINEAR SYSTEMS

Put this back into (1) and solve for xy:
1

1
- (~1.00+1. — .
1= goor (100 + 1.005) = 57 - 0.0

Note that 1 is wrong!!
What is the problem? We see that 0.001 is a very small number!

One way around this difficulty: Change the order of two equations.

1.00z; 2.00z, = 3.00 (1)
0.00100z; —1.00z, = —1.00 (2)

Now run the whole procedure again: (1) * (—0.001) + (2) will give us x2 = 1.00.
Set it back in (1):

z1 = 3.00 — 2.00z2 = 1.00
Solution now is correct for 3 digits.

Conclusion: The order of equations can be important!

Consider
axy +appry = by
ao1x1 +axpry = by

Assume that we have computed Z9 = x5+ 9 where €5 is the error (machine error, round
off error etc).

We then compute x1 with this Zs:

- 1 5
1 = — (b1 —a12Z2)
ai
1
= — (b1 — apw2 — a12¢2)
ar
1 a19
= —(by —ajpwy) — —¢2
ai ar
—_———

= I — €1
Note that 1 = %62. Error in x5 propagates with a factor of %

For best results, we wish to have |a11| as big as possible.

Scaled Partial Pivoting. Idea: use maxy<;<y |a;x| for a;;.

Procedure:

1. Compute a scaling vector

§=[s1,82, - ,8,], where s; = 1Iéljagxn|aij|

Keep this § for the rest of the computation.

6.3. GAUSSIAN ELIMINATION WITH SCALED PARTIAL PIVOTING

2. Find the index k s.t.
W |
CI A

a;1
Sq

, t=1,---'n

Exchange eq (k) and (1), and do 1 step of elimination. You get

(a1 + apoxo + - + apprn = b (1)
ag9xo + -+ agpxy, = by (2)
aoxo + -+ aipty, = b1 (k)
\ Ap2%2 + -+ ATy = by (n)

3. Repeat (2) for the remaining (n — 1) x (n — 1) system, and so on.

Example Solve the system using scaled partial pivoting.

1+ 29+ 23 = 3 (1)
3x1 +4x2+0x3 = 3 (2)
221 + 1029 + 423 = 10 (3)

Answer. We follow the steps.

1. Get s.
§=[2,4,10]
2. We have
1w 3 an_ 2,
S1 2 S9 4 S3 10
Exchange eq (1) and (2), and do one step of elimination

3x1+4x04+0x3 = 3 (2)
Jortaz = 2 1) =@1)+2)*(3)
Zurg+dr; = 8 3) =B)+(2)*(-3)

3. For the 2 x 2 system,

w23 1 am 22
51 2 3’ S3 10 30
Exchange (3’) and (1’) and do one step of elimination
3x1 + 4xo +0x3 = 3 (2)
Zuo+4zg = 8 (3)

T = 11 1) =)+ @) (—54

65

66 CHAPTER 6. DIRECT METHODS FOR LINEAR SYSTEMS

4. Backward substitution gives

:E3:2, :EQZO, xr1 = 1.

In MAtlab, to solve Az = b, one can use:

> x= A\b;

6.4 LU-Factorization

Without pivoting: One can write A = LU where

L: lower triangular matrix with unit diagnal

U: upper triangular matrix

1 0 0 0 Uiy u12 U, (n—1) Uip
lor 1 0 0 0 uo U2, (n—1) Un
L=1|10z Iz 1 0], U= :
: 0 0 Un—1),(n—1) Y(n—1)n
lnl ln2 ln3 1 0 Unn

Theorem If Az = b can be solved by Gaussian elimination without pivoting, then we
can write A = LU uniquely.

Use this to solve Az = b: Let y = Uz, then we have

Ux = vy

Ly =0
Two triangular system. We first solve y (by forward substitution), then solve z (by
backward substitution).

With pivoting:
LU = PA

where P is the pivoting matrix.
Used in Matlab:

6.5. REVIEW OF LINEAR ALGEBRA

> [L,U]=1u(A);
>y =L\ b;
>x =0\ y;

-+ transparences.
Work amount for direct solvers for A € IR™*": operation count

flop: one float number operation (+, -, *, /)

$(n® —n) flops
Backward substitution: %(n2 —n) flops

Elimination:

Total work amount is about %n?’ for large n.

This is very slow for large n. We will need something more efficient.

6.5 Review of linear algebra

Consider a square matrix A = {a;;}.

Diagonal dominant system. If

n

|aii|> Z |aij|, i:1,2,---,n
Jj=1,j#i

then A is called strictly diagonal dominant. And A has the following properties:

e A is regular, invertible, A~! exists, and Az = b has a unique solution.

e Az = b can be solved by Gaussian Elimination without pivoting.

One such example: the system from natural cubic spline.

Vector and matrix norms:

A norm: measures the “size” of the vector and matrix.

General norm properties: z € IR" or x € IR™™". Then, ||z| satisfies
1. ||z|| > 0, equal if and only if z = 0;
2. [laz|| =la| - |lz||, a: is a constant;

3. |lz+yll < |lz|l + ||yl triangle inequality.

67

68 CHAPTER 6. DIRECT METHODS FOR LINEAR SYSTEMS

Examples of vector norms: x € IR"

n
L |zfl, = Z |4, [1-norm
i=1

n 1/2
2. ||lzll, = <Z x?) , l9-norm
i=1

3. |z]l = max |z, lso-norm

Matrix norm related to the corresponding vector norm, A € IR™*"

4] = Az]
70]
Obviously we have
| Az ||
1Al > T [Az|| < [|A]l - [|=]]
In addition we have
Il=1, [AB| < [|Al-IB]l.

Examples of matrix norms:

li —norm : [[A]|; = max Z i

1<j<n
ly —norm : [[All, = max |)\Z| , A : eigenvalues of A
loo —morm : [|All = max Z ;]

Eigenvalues \; for A:
Av = Ao, A eigenvalue, v : eigenvector
(A= X)v=0, = det(A—A[)=0: polynomial of degree n

In general, one gets n eigenvalues counted multiplicity.

Property:

This implies

477l = max [\ (A = ma -

i (N(ATYH)] ming [N (A7)

6.6. TRIDIAGONAL AND BANDED SYSTEMS 69

Condition number of a matrix A: Want to solve Az = b. Put some perturbation:

AZ=b+p
Relative error in perturbation:
]
b1l
Relative change in solution is
_ |z —=|
=
[l

We wish to find a relation between e, and e,. We have
Az —z)=p, = T—x=A1p

SO B . .
R e P)
]l [l]

By using the following

Av=b = |AX|=Ipll = [Allll=ll > [b] = ﬁﬁﬁ
we get
eo < [Il g = 141 47" = e
Here . max; |\
w(d) = IAIA™ = s

is called the condition number of A. Error in b propagates with a factor of x(A) into the
solution.

If k(A) is very large, Ax = b is very sensitive to perturbation, therefore difficult to solve.
We call this ill-conditioned system.

In Matlab: cond(A) gives the condition number of A.

6.6 Tridiagonal and banded systems

Tridiagonal system is when A is a tridiagonal matrix:

d1 C1 0 e 0 0 0
ay d2 Co L 0 0 0
0 a9 d3 - 0 0 0
0 0 0 - dyp2 ch—2 O
0 0 0 - ap—2 dp-1 cp-1

o 0 0 --- 0 ap—1 dn

70 CHAPTER 6. DIRECT METHODS FOR LINEAR SYSTEMS

or we can write

A = tridiag(a;, d;, ¢;).
This can be solved very efficiently:
e Elimination (without pivoting)

fori=2,3,---,n
a;—
d,’ — dl — ﬁci_l
aq—
bi — bl — ﬁbi—l
end

Now the A matrix looks like

d1 C1 0 e 0 0 0
0 do cg ~--- 0 0 0
0 0 dy3 . 0 0 0
A= . . .
0 0 0 dpo cp2 0
0 0 0 0 dn—l Cp—1
0O 0 0 0 0 d,,
e Backward substitution
Ty by /dy,
fori=n—-1,n—2,---,1
Ti < d%(bl — c,-ac,-H)

end

Amount of work: O(Cn) where C is a fixed small constant.

Penta-diagonal system. We can write
A = pentadiag(e;, a;, di, ¢;, fi)

which means

d ¢ f 0 0 -- 0 0 0

a1 do ¢ f2 o --- 0 0 0

€1 ag d3 C3 f3 ce 0 0 0
A=

0 0 0 T dn—2 Cp—2 fn—2

0 0 0 0 tee Ap—2 dn—l Cp—1

0 0 0 0 0 - ey an-1 dy

6.6. TRIDIAGONAL AND BANDED SYSTEMS

Band matrix: This is a more general description:
P 0
. d

. ds

0 g
|+ k — |

Here k > 0 is the band width, meaning a;; = 0 for all [i — j| > k.
We have

e diagonal matrix: k=0,

e tridiagonal matrix: k =1,

e pentadiagonal matrix: k = 2.

Gaussian elimination is efficient if £ << n.

Some Matlab commands:

[L,U] = 1u(h); % LU-factorization

norm(x) ; % vector norm

eig(h); % eigenvalue/eigen vector of a matrix
cond(A); % condition number of A

71

72

CHAPTER 6. DIRECT METHODS FOR LINEAR SYSTEMS

Chapter 7

Iterative solvers for linear
systems

7.1 General introduction

Want to solve Ax = b, where A € IR"*", n is very large, and A is sparse.

Two classes of solvers:

e Direct solvers (Gaussian Eliminatio, LU factorizatio etc): very slow.

e [terative methods: finding only approximation to solutions. Useful for large sparse
systems, usually coming from discretization of differential equations.

Properties of such systems
e Large, n is very big, for example n = O(10°).
e A is sparse, with a large percent of 0 entries.

e A is structured. (meaning: the product Az can be computed efficiently)
Two classes of iterative methods

1. Fixed-point iterations

e Jacobi
o Gauss-Seidal

e SOR

2. Krylove technics (not covered in this course, though widely used)

73

74 CHAPTER 7. ITERATIVE SOLVERS FOR LINEAR SYSTEMS

7.2 Jacobi iterations

Want to solve Az = b. Write it out

a1 + apxe + - -+ apmr, = b
a171 + Ao + -+ + a2p Ty = bo
An1T1 + ap2T2 + - + Appn = by
Rewrite it in another way:
(1
1 = 57 (b1 —anz +apry+ - apn)
1
ro = (b2 —anz +anry+ - ann)
1
T = g (b2 — an1@1 + an2a + -+ AnnTn)
or in a compact for:
1 n
a:,:a— bi— E QiG5| i:1,2,~~-,n
“ j=Lj#i

This gives the Jacobi iterations:

e Choose a start point, z° = (:E?,:Eg, -, 2%)t. For example, one may choose 3:? =1
for all 4, or z; = b;/aj;.
e for k=0,1,2,--- until stop criteria

fori=1,2,---,n
1 n
k+1 2 : k
.Z'Z- = CL_ bl — a,-jxj
" i=Lj#i
end

end

Stop Criteria could be any combinations of the following
e 2" close enough to zF~1, for example H:Ek — :Ek_lu < ¢ for certain vector norms.
e Residual r* = AzF — b is small: for example HrkH <e.

e or others...

7.3. GAUSS-SEIDAL ITERATIONS

About the algorithm:
e Must make 2 vectors for the computation, zF and zF+1.

e Great for parallel computing.

Example 1. Solve the following system with Jacobi iterations.

2(51 — I = 0
—r1+ 29 —2x3 = 1
—xo+2x3 = 2

given the exact solution z = (1,2, 2)’.
Answer. Choose 2° by ¥ = b;/a;;:
20 =(1, 1/2, 1)t

The iteration is

k+1 1k

21 = 3272

E+1 _ 1 k4 ok
x = (1 +af +z3)
k+1 1 k

w5t = 52+ af)

We run a couple of iterations, and get
b = (0.25, 1, 1.25)
22 = (0.5, 1.25, 1.5)
2 = (0.625, 1.5, 1.625)°

Observations:

e Looks like it is converging. Need to run more steps to be sure.

e Rather slow convergence rate.

7.3 Gauss-Seidal iterations

An improved version: observe that in Jacobi iteration, we write

1 n
E+1 Z k
:EZ- = CL_ bi— aijznj
" j=Lj#i
i—1 n
1 ZZ k Z k
= CL_ bi— aija:j — a,-jxj
v j=1 j=i+1

In the first summation term, all a:;C are already computed for step k + 1.

We will replace all these a:;C with a:?“. This gives:

75

76 CHAPTER 7. ITERATIVE SOLVERS FOR LINEAR SYSTEMS

Gauss-Seidal iterations: use the latest computed values of x;.
for k=0,1,2,--- , until stop criteria
fori=1,2,---,n
1 i—1 n
k+1 _ k+1 k
pfth=— b= D eyl = Y i)
w j=1 j=i+1
end

end

About the algorithm:

k+1

e Need only one vector for both z* and zF*!, saves memory space.

e Not good for parallel computing.

Example 2. Try it on the same Example 1, with z° = (0,0.5,1)!. The iteration now is:

k+1 1,k

1 = 3272
k+1 1 k+1 k
k+1 1 k+1

w3t = 52+ayth)

We run a couple of iterations:
b = (0.25, 1.125, 1.5625)
2?2 = (0.5625, 1.5625, 1.7813)¢

Observation: Converges a bit faster than Jacobi iterations.

7.4 SOR

SOR (Successive Over Relaxation) is a more general iterative method. It is based on
Gauss-Seidal.

—1 n
1 (]
A= 0wt e S D el
i T =
j=1 j=i+1
Note the second term is the Gauss-Seidal iteration multiplied with w.
w: relaxation parameter.

Usual value: 0 < w < 2 (for convergence reason)

7.5. WRITING ALL METHODS IN MATRIX-VECTOR FORM

e w = 1: Gauss-Seidal
e 0 < w < 1: under relaxation

e 1 < w < 2: over relaxation

Example Try this on the same example with w = 1.2. General iteration is now:

o = —0.22% 4 0.625
b = 0205 4 0.6 % (14 28! 4+ 2k)
b = —0.205 +0.6% (2 + 25T

With 2% = (0, 0.5, 1), we get

b = (0.3,1.28,1.708)"
o = (0.708,1.8290,1.9442)

Recall the exact solution z = (1,2, 2)".

Observation: faster convergence than both Jacobi and G-S.

7.5 Writing all methods in matrix-vector form

Want to solve Ax = b.

Splitting of the matrix A:
A=L+D+U

where

e [is the lower triangular part of A:

.) ay, i>]
L_{lij}a lZJ_{ 0 ZS]
e D is the diagonal part of A:
— {d.) @i = G, i=]
D_{dlj}v dl]_{ 0 275]
e [is the upper triangular part of A:
— s) ay, i<j
U_{ulj}7 U’U_{ 0 12]

78 CHAPTER 7. ITERATIVE SOLVERS FOR LINEAR SYSTEMS

U

Figure 7.1: Splitting of A.
See the graph in Figure 7.1 for an illustration.

Now we have
Av=(L+D+U)xr=Lzx+Dx+Uzx=b

Jacobi iterations:
DaFtl = b — Lok — Uz®

SO
:Ek-i-l — D_lb—D_l(L+U)$k :yJ+MJ$k

where
yy; = D', M;=—-D"YL+U).

Gauss-Seidal:
Dt 4 Labtl = b — UF

SO
ZF = (D + L)_lb — (D + L)_lUﬂjk =ygs + Mgsﬂjk

where

yos = (D+L)"'b, Mgs=—(D+L)"'U.
SOR:

M = (1 —w)z® + wD™ (b — La*tt — Uz

= DzFl = (1 —w)Dz* + wb — wLz" ! — wUz*

= (D+wL)z" = wb + [(1 — w)D — wU]z*

S0
2" = (D +wL) '+ (D4 wL) (1 —w)D — wU]z* = ysor + Msorz®

where

ysor = (D +wL)™'b, Msor = (D +wL) (1 —w)D — wU].

7.6. ANALYSIS FOR ERRORS AND CONVERGENCE 79

7.6 Analysis for errors and convergence

Consider an iteration of the form
zF = y—+ M 2"

Assume s is the solution s.t. As = b.
This means s is a fixed point of the iteration: s =y + Ms.

Define the error:
k k

e =x"—s
We have
M = gh Ll s — g 4 Ma® — (y+ Ms) = M(z* — 5) = Me".
This gives the propagation of error:
S N Y
Take the norm on both sides:

o2 = e < -]

This implies:

, ¥ =20 —s.

< o e

Theorem If | M| < 1 for some norm ||-||, then the iterations converge.
NB! Convergence only depends on the iteration matrix M.

Check our methods: A= D+ L+ U.
e Jacobi: M = —D~Y(L +U), given by A;
e G-S: M = —(D + L)~'U, given by A;

e SOR: M = (D + wL)"'[(1 — w)D — wU], can adjust w to get a smallest posible
||M]|. More flexible.

Example Let’s check the same example we have been using. We have

2 -1 0

80 CHAPTER 7. ITERATIVE SOLVERS FOR LINEAR SYSTEMS

0 0 0 2 00 0 -1 0
L=|-1 0 0}, D={0 2 0}, U=10 0 -1
0 -1 0 0 0 2 0 0 0
The iteration matrix for each method:
0 05 0 0 0.5 0 —0.2 0.6 0
M;=105 0 05], Mas=10 025 05 |, Msor=| —0.12 0.16 0.6
0 05 0 0 0.125 0.25 —0.072 0.096 0.16
We list their various norms:
M {1 norm | Iy norm | [,, norm
Jacobi 1 0.707 1
G-S 0.875 0.5 0.75
SOR 0.856 0.2 0.88

The Iy norm is the most significant one. We see now why SOR converges fastest.

Convergence Theorem.

laiil > > agl,

n

=1,

Vi=1,2, -

If A is diagonal dominant, i.e.,

Then, all three iteration methods converge for all initial choice of x°.

NB! If A is not diagonal dominant, it might still converge, but there is no guarantee.

Chapter 8

The Method of Least Squares

8.1 Problem description

Given data set

X ‘) T X9 e Tm
Yy ‘ Yo Y1 Y2 - YMm
Data come from observation (measured) or experiments.

These y;’s can have error (called “noise”) in measuring or experimenting.
y has a relation with x from physical model: y = y(x).

Then, our data is
yk = y(xk) + ek

where ey, is error.

8.2 Linear regression and basic derivation

Example 1. If y = ax + b, this is called linear regression. Your lab data would not lie
exact on a straight line (or your lab instructor will be very suspicious!). Our job now is
to find a straight line that “best” fit our data. See Figure 8.1 for an illustration.

A more specific way of saying the same thing: Find a, b, such that when we use y = az+b,
the “error” becomes smallest possible.

How to measure error?

1. max ly(xx) — Y| — loo nOrm

m
2. Z ly(xr) — yi| — {1 norm
k=0

81

82 CHAPTER 8. LEAST SQUARES

Figure 8.1: Linear regression.

3. Z[y(:nk) —yx)? — I3 norm, used in Least Square Method. (LSM)
k=0

Our problem can now be stated as a minimization problem:

Find a and b such that the error function ¢ (a,b) defined as

m
Z axry + b — yk
k=0
is minimized.
How to find a and b?

At the minimum of a function, we have

o _ov
da Ob
In detail:
oLl =
v _ 9 _ — I
5 0 kzzo (axy +b—yi)zr =0, (1)
o “
o5 =" > 2(axy +b—yy) =0, (I1)

e
i
o

Solve (I),(II) for (a,b). Rewrite it as a system

) oo () - e

k=0
<Zxk> +(m+1)-b = Zyk
k=0 k=0

8.2. LINEAR REGRESSION AND BASIC DERIVATION 83

These are called the normal equations.

Example 2. Consider the data set (from textbook, p.428)

T, | 0 | 10|20]30] 40] 8 | 90 | 95
Sy [68.067.1]66.4]65.6|64.6|61.8|61.0 | 60.0

where
S surface tension in a liquid
T: temperature
From physics we know that they have a linear relation
S=al'+b

Use MLS to find the best fitting a, b.

Answer. We have m =7, and

T = 04+10%4+20% + - +90? + 95% = 26525

T, = ---=365
k=0

7
ZTkSk = ...=22685
k=0

7

Zsk — ...=5145
k=0

The normal equations are

26525a +365b = 22685
365a+8b = 5145

Solve it
a = —0.079930, b = 67.9593.

So
S(T) = —0.079930 T + 67.9593.

84 CHAPTER 8. LEAST SQUARES

8.3 LSM with parabola

Example 3. Given m + 1 data (zy, yx){",. Find y(z) = az? + bz + ¢ that best fit our
data.

Answer. Define the error (in least squares sense)

Y(a,bye) =Y (axi + by +c— yk)2
k=0
At minimum, we have
o _0v _0v _,
da Ob Oc
In detail:
a m
8_15:0 : Z2(awz+bxk+c—yk)-wi=0
k=0
a m
6_7’;;:0 : Z2(awi+bxk+c—yk)'wk=0
k=0
a m
a_zf:() . ZQ(&:E%—FZ)Q?}C-I-C—yk):O
k=0

The normal equations:

<Zmi>'a+< %)b%—(Zwi)c = Zm%yk

k=0 k=0 k=0

<Zmi>'a+<zxi>'b+<zwk>'c = Zfﬂkyk
k=0 k= k=0 k=0
<Zm%>-a+<2xk>-b+(m+l)-c Zyk

\ \k=0 k=0

k=0
We have 3 linear equations for 3 unknown. The system is symmetric.

NgE
8

Need to compute only:

Z‘riv ZZE%’ sz’ lew ng%yk, Zxky/w Zyk

8.4 LSM with non-polynomial

Example 4. Non-polynomial example. Given data set (zy,yr) for k£ = 0,1,--- ,m.
Find a
y(@) =a- f(z)+b-g(x)+c-h(z)

8.5. GENERAL LINEAR LSM 85

which best fit the data. This means we need to find (a, b, c).

Here f(z),g(x),h(x) are given functions, for example

f(x) =e€", g(z) = In(z), h(z) = cosx,
but not restricted to these.

Define the error function:
m m

v(a,be) = (y(a =Y (a- flzg) +b-glag) +c- hlay) - y)°

k=0 k=0
At minimum, we have

g_zf:o :]§2:a-f(a:k)+b~g(xk)+c'h(9€k)—yk:‘f(ﬂfk):
g_;f:o : §2:a-f(:nk)+b-g(a:k)+c'h(3:k)—yk: ~g(zr) =0
W0 kzzozja-f(a:k)+b.g<xk>+c'h<xk>—y;{ hlax) =0

The normal equations are

<Zf:ck >a+<2ka xk>b+<§:ka xk> —

k=0

(Z f(xk)g(wk)> a+ <Z g(ﬂfk)2> (Zh > = 9(@)Yk

k=0 k=0 k=0 k=0

<Z f(iﬂk)h(iﬂk)) a+ <Z f($k)h($k)> b+ (Z h(iﬂk)2> c = > h(zk)y
k=0 k=0 k=0

We note that the system of normal equations is always symmetric. We only need to
compute half of the entries.

8.5 General linear LSM

Let go,91,92, - gn be n+ 1 given functions (they don’t need to be linear).
Given data set (g, yx), K =0,1,--- ;m. (m and n are in general different).

We search for a function in the form

= Z cigi(z)
i=0
that best fit the data.

Here g;’s are called basis functions.

86 CHAPTER 8. LEAST SQUARES

How to choose the basis functions? They are chosen such that the system of the
normal equations is regular (invertible) and well-conditioned.

Requirements. ¢;’s must be a set of linearly independent functions. Meaning: one
can not be written as linear combination of the others, or

Zc,-g,-(x) =0, ifandonlyif ¢cy=ci=co=---=¢,=0.
i=0

Define error function

m m n 2
Yco,c1ye ey en) =Y {y(ﬂfk) - ykr => [Z cigi(z) — yk]

At minimum, we have

This gives:

Z 2 [Z cigi(wx) — yk] gj(ZEk) =0
i=0

k=0

Re-arranging the ordering of summation signs:

> (Z gi(ﬂfk)gj(iﬂk)) ¢ =Y gi(@)ye, §=0,1,-n.

i=0 \k=0 k=0
This gives the system of normal equations:
Aé=1b
where ¢ = (cg, 1, ,¢p)
m
A ={ai;}, ai; =Y gi(wr)g;(wr)
k=0

b= {b;}, bj = (k).
k=0

We note that this A is symmetric.

8.6. NON-LINEAR LSM 87

8.6 Non-linear LSM

Next is an example of quasi-linear LSM.

Example 5. Consider fitting the data with the function
y(@) =a-b*

This means, we need to find (a,b) such that this y(x) best fit the data.

Do a variable change:
Iny=Ina+zx-Inb.

Let B
S =1Iny, a=lna, b=1Inb.

Given data set (xg,yx). Compute Si = Iny; for all k.
We can now find (@, b) such that Sy best fits (x4, Sy).

Then, transform back to the original variable

a = exp{a}, b = exp{b}.

Example 6. Non-linear LSM. For example,

y(x) = ax - sin(bzx).
We can not find a variable change that can change this problem into a linear one. So
we will now deal with it as a non-linear problem.
Define error
m m)
P(a,b) = Z [y] Z [awk sin(bxy,) yk] .
k=0 k=0

At minimum:

g—f =0];)2 [a:f:k -sin(bxy) — yk] “[zg - sin(bay)] =0
Z_f =0];)2 [a:nk -sin(bzy) — yk] - lazy, - cos(bxg)zk] =0

We now have a 2 x 2 system of non-linear equations to solve for (a,b)!
May use Newton’s method to find a root.

May have several solutions, including all the maximum, minimum and saddle points.
(see slides)

88

CHAPTER 8. LEAST SQUARES

Chapter 9

Numerical solution of ordinary
differential equations (ODE)

9.1 Introduction

Definition of ODE: an equation which contains one or more ordinary derivatives of an
unknown function.

Example 1. Let x = 2(¢) be the unknown function of ¢, ODE examples can be

= a2, 2+’ +4=0, ete.

We consider the initial-value problem for first-order ODE

(%) ' = f(t,x), — — differential equation
x(tg) = xo — — —initial condition, given

Some examples:

=x+1 x(0)=0. solution: x(t)=e —1
=2, z(0)=0. solution: x(t) = 2t.

In many situations, exact solutions can be very difficult/impossible to obtain.

Numerical solutions: Given (*), find z, = z(t,), n = 1,2,--- /N, and ¢ty < t; <
-+- < ty. Here ty is final computing time.

Take uniform time step: Let h be the time step length
thy1 —th = h, t, = to + kh

Overview:

89

90 CHAPTER 9. ODES

e Taylor series method, and error estimates
e Runge-Kutta methods

e Multi-step methods

e System of ODE

e High order equations and systems

e Stiff systems

e Matlab solvers

9.2 Taylor series methods for ODE

Given
:I"/(t) = f(t,ﬂj‘(t)), :E(tO) = Zo-
Let’s find 21 = x(t1) = x(to + h). Taylor expansion gives

1 = 1
(to + h) = x(to) + ha'(to) + 51123:”(750) o=y %hmaz(m) (to)

m=0
Taylor series method of order m: take the first (m+ 1) terms in Taylor expansion.
1 1
x(to + h) = x(to) + ha'(to) + §h233”(t0) + o+ =R (1),
m!

FError in each step:

k=m+1 (m T 1)'

for some £ € (tg,t1).

For m = 1, we have Fuler’s method:
x1 = 0 + ha'(to) = 20 + h - f(to, 7o)
General formula for step number k:
Tpy1 =z + h - f(tg, k), k=0,1,2,---

For m = 2, we have

1
r1 = x0+ ha'(ty) + §h2w”(t0)

9.2. TAYLOR SERIES METHODS FOR ODE 91
Using

2" (tg) = %f(to,x(to)) = fi(to, z0) + f2(to, z0) - 2’ (to) = fi(to, z0) + fz(to, o) - f(to, o)

we get

1 = X0 + hf(t())x()) + %h? [ft(t07$0) + f:v(t07$0) : f(t(])x())]

For general step k, we have

Tpp1 = ok + hf (ty, z1) + %hz [fe(ths z) + fo(te, zr) - f(tes 2r)]

Example 2. Set up Taylor series methods with m = 1,2 for

/

¥=—z+e z(0) = 0.

(Exact solution is z(t) = te™t.)
Answer. The initial data gives x¢ = 0.
For m = 1, we have

Tpy1 = Tk + h(—zp + e_t’“) =(1—h)xg + he tk

For m = 2, we have

2

" =(—x+e)y =2 —e!

—rx—elt—et=x—2

—t
SO
/ 1 2. .1
Tyl = xk+hxk+§h Ty,

1
= xp +h(—op +exp{—tr}) + 5}12 [xr, — 2 exp{—ts}]

= (1-h+ %hz):Ek + (h — h?) exp{—t}}

Example 3. Set up Taylor series methods with m = 1,2, 3,4 for

(Exact solution x(t) = ¢')
Answer. We set g = 1. Note that

" / " "
=1 =z, 2" =2"=x - af

92 CHAPTER 9. ODES

We have
m=1: g1 = Xk + hxg = (1 + h)zy
m=2: Tka1 = Tk + hxy + %hzxk = (1+h+%h2)xk
m=3: Tpe1 = T + hag + %hzxk + éh?’wk =(1+h+ %h2 + %h?’)wk
m=4: xk+1:(1+h+%h2+%h3+ih4)wk
See slides.

Error analysis. Given ODE

x' = f(t,ﬂj‘), :E(to) = Z0-
Local truncation error (error in each time step) for Taylor series method of order m is

hm—l—l dmf(f)

hm—l—l

k m
) = lows = (e +-1)] = | a0 = | T et
Here we use the fact that -
Smrn) _ 4"
dtm
Assume now that dmf
<

We have v
(k) < 7hm+1 -0 hm—i—l
‘L= (m+1)! ()
Total error: sum over all local errors.

Detail: We want to compute z(7T") for some time ¢ = T. Choose an h. Then total
number of steps is
N = fraclh, i.e., T = Nh.

Then
N N
P o= Y| ey e
k=1 k=1
M M MT
= Niherl Nh)———h" = ——h" = O™
(m+1)! ()(m—i-l)! (m+1)! (™)

Therefore, the method is of order m.

In general: If the local truncation error is of order O(h®*!), then the total error is of
O(h"), i.e., one order less.

9.3. RUNGE KUTTA METHODS 93

9.3 Runge Kutta methods

Difficulty in high order Taylor series methods:
'’ x" - might be very difficult to get.

A Dbetter method: should only use f(t,z), not its derivatives.
1st order method: The same as Euler’s method.

2nd order method: Let h =t 11 — t;. Given zy, the next value xj,1 is computed as

1
Thyl = Tf + §(K1 + K>)

where
{ Kl = h- f(tk,xk)
Ky = h- f(tig1, 2 + Ky)
This is called Heun’s method.

Proof that this is a second order method: Taylor expansion in two variables
ft+h,x+ Ky) = f(t,x) + hfi(t,) + K1 fo(t,z) + O(h*, K?).

We have K, = hf(t,z), abd
Ky = h[f(t,a:) + hfi(t,x) + hf(t,x) fo(t, 2) + (’)(hQ)]
Then, our method is:
Thyr = TRt % (Bf 4+ hf + W2+ B2 f £+ O()]
= o+ hf PRl]+ O0)
Compare this with Taylor expansion for z(tyy1) = z(tx + h)
z(ty+h) = z(ty) + ha'(t) + %h%”(tk) + O(h?)
= x(t) + hf(te, %) + %hQ[ft + f.2') + O(h?)
= () + hf 4 G+ Ff] +O0)

We see the first 3 terms are identical, this gives the local truncation error:

ey = O(hg)

94 CHAPTER 9. ODES

meaning that this is a 2nd order method.

In general, Rung-Kutta methods of order m takes the form

Tpt1 = Tk + w1 K+ wo Ko + -+ - + w, K,

where
Ky = h-f(tg,xp)
Ky = h- f(tk+a2h,3:+b2K1)
Ks = h- f(tk+a3h,3:+b3K1 —|—63K2)

Km = h-f(te +amh,z+ X7 6:K;)
The parameters w;, a;, b;, ¢; are carefully chosen to guarantee the order m.
NB! The choice is NOT unique!

The classical RK4 : a 4th order method takes the form
Tht1 :xk—ké K1 +2Ks +2K3 + K4
where
Ky = h-f(te, =)

1 1
Ky, = h'f(tk+§h, $k+§K1)

1 1
Ky = h-f(tyx + §h, T + §K2)

Ky = h-f(ty+h, o+ K3)

See slides for codes.

9.4 An adaptive Runge-Kutta-Fehlberg method

In general, we have

1. smaller time step h gives smaller error;

2. The error varies at each step, depending on f.

Optimal situation: h varies each step to get uniform error at each step.

9.4. AN ADAPTIVE RUNGE-KUTTA-FEHLBERG METHOD 95

This leads to adaptive methods.
Key point: How to get an error estimate at each time step?

One possibility:

e Compute z(t + h) from z(t) with step h;

Compute z(t + $h) from z(t) with step 1k, then compute x(t +h) from z(t + £h)
with step 1h; Call this Z(t + h);

Then, |z(t + h) — Z(t + h)| gives a measure to error;
° if error >> tol, half the step size;
° if error << tol, double the step size;

° if error & tol, keep the step size;

But this is rather wasteful of computing time. Although the idea is good.

A better method, by Fehlberg, building upon R-K methods. He has a 4th order method:

25 1408 2197 1
x(t+h)=x(t) + %Kl + o565 L3 + mK4 - 5K5,
where
Ky = h- f(t7$)
1 1
K2 = h f(t—|—1h, x + ZKI)
3 3 9
Ky = —h —K K
12 1932 7200 7296
Koo= h-fltt 3h ot 5gn K1 = 517 Ko + 577 K3)
439 3680 845
Ky = h- f(t—i— h, r+ EKl — 8Ky + —513 K3 — —4104K4)
Adding an additional term:
1 8 3544 1859 11
K6 —hf(t+§h, Xr — ﬁK1+2K2_ %KB—FMKLL_ EKS)
We obtain a 5th order method:
16 6656 28561 9 2
(t+h)=2(t)+ —K; + —— — Ky — — K5+ —Kg.
T+ h) = wlt) + 32K+ e Ka + 555 — 506 + 55K

Main interests here: The difference |z(t + h) — Z(t + h)| gives an estimate for the error.

Pseudo code for adaptive RK45, with time step controller

96 CHAPTER 9. ODES

Given tO: zo, h07 Nmazxy €min, Emax hmina hmax
set h = hg,x = zo, k =0,
while k < Ny do

if h < hypin then h = hoin
else if h > hyyer then h = hyngs
end
Compute RK4, RK5, and e = |RK4 — RK5|
if e > emar, then h = h/2;
else
k=k+1; t=t+h; x=RKH5;
If e < emin, the h = 2 % h; end

end

end (while)

9.5 Multi-step methods

Given
¥ = f(t,z), x(ty) = o,

Let t, = to + nh. If x(t,) is given, the exact value for z(t,—1) would be

tn+1
(tp1) = x(ty) + / 7'(s)ds
tn

Assume we know x,,, 1, Tp_2, - ,Tp_g One can approximate the integrand z’(s) by
using interpolating polynomial.

Example Consider £k = 1. Given x,,r,_1, we can compute f,, f,_1 as

fa= f(tnyxn)v fac1= f(tn—lyxn—l)
Use now linear approximation, i.e., straight line interpolation,

2 (s) = Pi(s) = foo1+ %(s —tn_1)-

Then
tn+1 h
st =aat [Pr(s)ds = wut 33— fuc).
tn

9.5. MULTI-STEP METHODS 97

Adams-Bashforth method: The explicit version. Given
T Tn—1,""" ,Tn—k

and
fn7 fn—b Ty 7fn—k
find interpolating polynomial Pj(t) that interpolates (t;, f;)"_,,_,.. Compute

tn+1
Tptl = Tp + / Pi(s)ds
tn
which will always be in the form

Tptl = Ty + h - (bOfn + blfn—l + b2fn—2 R bkfn—k)
Good sides: Simple, minimum number of f() evaluations. Fast.

Disadvantage: Here we use interpolating polynomial to approximate a function out-
side the interval of interpolating points. This gives bigger error.

Improved version. implicit method, Adams-Bashforth-Moulton (ABM) method.
Find interpolating polynomial Py 1(t) that interpolates

(fn+17tn+1)7 (fn,tn), Tty (fn—katn_k)7
and use
tn+1
Tptl = T —I—/ Pii1(s)ds
tn

which will always be in the form

Tpyl = Ty + h - (b—lfn-l-l + bOfn + blfn—l + b2fn—2 R bkfn—k)

where f,+1 = f(tnt1,Tny1) which is unknown. Therefore, we get a non-linear equation.

Can be solved by fixed-point iteration (Newton’s method). Use AB solution as the initial
guess, it will converge in 2-3 iterations.

Example For a couple of k values, we have
k=—-1: Tptl = Tn +h - fria, (implicit backward Euler’s method)

h
k=0: xpp1=a,+ §(fn + fo+1)s (trapezoid rule)
) 3 1
k=1: Tpt1 = Tn + I~ ﬁfn-i—l'i‘ﬁfn_ﬁfn—l

With fixed point iteration:

98 CHAPTER 9. ODES

Given zy,, p_1, fn, fn_1, compute AB solution with k = 1:

(P) ':U:;+1 = Tn + h (gfn - %fn—l)

d1 = [t) -

Do one iteration of Newton’s method, to correct the error:

h
(C) Tpn+1 = In + 5 (f:;—l—l + fn)

Jnrr = f(tag1, Tns1)

Here step (P) is called the predictor, and step (C) is the corrector.

This is called predictor-corrector’s method.

9.6 Methods for first order systems of ODE

We consider

f/:F(t7f)v Z(to) = o
Here ¥ = (x1,79, -+ ,2,)! is a vector, and F = (fi, fo, -, fa)! is a vector-values
function.
Write it out

x/l = fl(t7x17x27”' 7wn)

.Z'/2 = f2(t7x17x27”’ w%'n)

x;’l, = fn(t7x17x27”’ 71.77,)

Remark: All methods for scalar equation can be used for systems!

Taylor series methods:

1 1
Z(t+h) =7+ hz' + §h2f” + o
m:

Example Consider
o= w2t —t2 13
rh = a1+ mg— 42443

We will need the high order derivatives:

o = 2} —ah+2— 2t — 3t
Ty = x1+ w9 — 8t + 3t

9.7. HIGHER ORDER EQUATIONS AND SYSTEMS

and

) = o —2f—2—6t
vy = of + a5 — 846t

and so on...

Runge-Kutta methods take the same form. For example, RK4:
S I - - -
Tp1 = Tk + G [Kl +2K2 +2K3 + K4]
where

Kl = h-F(tk, (Zk)

1 1~
Ky = h-F(tk+§h, fk+§K1)
1 . 14
Kg == hF(tk+§h, $k+§K2)

Ky = h-F(ty+h, T+ Ks)

Here everything is a vector instead of a scalar value.

9.7 Higher order equations and systems

Treatment: Rewrite it into a system of first order equations.

Example Higher order ODE
™ = f(t,x 2 2", 2Y)
with
2(to), 2/ (to), 2" (o), - -, 2"V (to)
given.

Introduce a systematic change of variables

/ —
s1=x, wo=2d, x3=2a", - zp=azm""D
We then have))
(2] = 2’ =29
/ _ " __
ry = 2" =uz3
/ "
/ n—1) _
o o=) =g,
/ _ n) _
Ty, = 33‘()—f(t,ﬂfl,ﬂfg,“‘,ﬂfn)

This is a system of 1st order ODEs.

Systems of high-order equations are treated in the same way.

99

100 CHAPTER 9. ODES

9.8 Stiff systems

A system is called stiff if the solution consists of components that vary with very
different speed/frequency.

Example Consider
the exact solution is
We see that
(P1) xr—0 as t— 4oo.
Solve it by Euler’s method:
Tpy1 = Tp — ahxy = (1 —ah)z,, = x,=(1—ah)"zo=(1- ah)h
In order to keep the property (P1), in the approximate solution, i.e.,
z, — 0, as n — 400,

We must have 5
1 —ah| <1, = h<-
a

which gives a restriction to the time step size: it has to be sufficiently small.

Example Now consider a system

= =20z — 19y z(0) = 2
y = —19x — 20y y(0) = 0

The exact solution is
{ x(t) = e et

y(t) _ e—39t_e—t

Observations:

The solution tends to 0, i.e., x — 0,y — 0 as t — +o0.
e Two components in the solution, e 3% and e™;

They decay at a very different rate. The term e~3% tends to 0 much faster than

the term e~ ?;

For large values of ¢, the term e~* dominate.

=39 ig called the transient term.

Therefore, ¢

9.8. STIFF SYSTEMS 101

Solve it with Euler’s method:
Tpt1 = Tp+h- (=202, —19y,) 0 = 2
{ Ynt1 = Yn+h- (=192, — 20y,) {
One can show by induction that
xn = (1—=390)" 4+ (1 —h)"
{ Yn = (1—=39h)" —(1—h)"

We must require that
z, — 0, Yn — 0 as n — 4oo.

This gives the conditions
|1 —39h| <1 and I1—h| <1

which implies
2
(1):h<® and (2): h<2

We see that condition (1) is much stronger than condition (2), therefore it must be
satisfied.

Condition (1) corresponds to the term e™3% which is the transient term and it tends

to 0 very quickly as t grows. Unfortunately, time step size is restricted by this transient
term.

A more stable method: Backward Euler, implicit method

Tne1 = ZTp+h-(—20zp41 — 19Yn11)
Ynt1 = Yn+h- (197541 — 20yn41)

Let
=20 -19 N L [z
4= <—19 —20>’ o <y> e (yn>

We can write

= (I —hA)
= Tpi1 = (I —hA)™

Take some vector norm on both sides

[Zusa | = ([= 0A)1Z | < (2 =AY]

102 CHAPTER 9. ODES

We see that if ||(I — hA)™!|| < 1, then &, — 0 as n — +oc.

Use the Iy norm:

) B 1
(7 = hA)~H] = max [Ao(T = hA) 7| = manx (1= h-Xi(4))]

We have
A(A) = -1, A2(A) = —39

They are both negative, therefore 1 — hA; > 1, implying
(1 —ha)7 <1

independent of the value of h.

Therefore, this method is called unconditionally stable.
Advantage: Can choose large h, always stable. Suitable for stiff systems.

Disadvantage: Must solve a system of linear equations at each time step
(I - hA)fn+1 - fn

Longer computing time for each step. Not recommended if the system is not stiff.

